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Residual Phase Noise
of Digital Frequency Dividers

Many low noise synthesizers and phase-locked loops utilize frequency dividers to generate integer sub-multiple
frequencies from available low noise sources. In order to preserve signal quality, it is desirable to use frequency
dividers that exhibit the lowest residual noise properties. Since digital devices should suppress all AM noise, phase
noise is of most interest. Residual phase noise measurements were made with similar devices from the four logic
families of ECL, ACT, FAST and LS. Test conditions were held constant in order to provide comparative results. Test
results indicate that ACT (CMOS) exhibits the lowest residual phase noise, followed by FAST, LS and ECL.

Introduction

The most common circuit used
for digital frequency division con-
sists of a series of bistable flip-flops
with synchronous clock inputs. The
synchronous frequency divider,
shown in Figure 1, is considered
more desirable than the asynchro-
nous device. Noise present on the
input signal causes the time at
which the triggering signal crosses
its threshold to vary, resulting in
phase jitter (¢(t)). In the synchronous
frequency divider, the final output
signal is dependent only on the jitter
of the input signal, whereas in the
asynchronous frequency divider,
shown in Figure 2, the output signal
jitter is dependent upon the noise of
the input signal as well as the noise
in all intermediate stages.

In most applications, specifica-
tions are provided in terms of signal
phase noise spectral density S,(fn)
(the Fourier transform of ¢(t)) or sin-
gle-sided phase noise L(f,) where

N=2n
L(fm) = S“g"‘)
S in trl'l
Ssoulle) = 200

which indicates the input phase
noise should be reduced by a factor
of N2 (or 20*log(N) dB) for ideal fre-

quency division. Due to the limita-
tions of the physical electronics,
there is an inherent limit to the out-
put phase noise power spectral
density (Sé(fm)min). Consequently,
when using digital frequency divid-
ers in low noise applications, where
the phase noise of the input clock
is considerably lower than that of the
electronics in the frequency divid-
ers, the 20*log(N) rule is invalid. At
best, one can expect output signal
phase noise to be equal to the fre-
quency divider limit (Sg(fm)min).

All logic families provide devices
suitable for frequency division. Four
logic families were chosen to be
representative of the most likely
candidates for applications in which
a choice exists, that is, high fre-
quency applications (fi,~> 100 MHz)
dictate the use of ECL. The families
tested were ECL, FACT (Fairchild
advanced CMOS with TTL outputs),
FAST (Fairchild advanced Schottky
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barrier TTL) and LS (low power
Schottky barrier TTL).

Description

In order to characterize each log-
ic family accurately, an effort was
made to keep all measurement pa-
rameters constant (frequency, am-
plitude, layout and independent
noise contributors). In all cases
(ECL and TTL), a synchronous +4
circuit was constructed. Due to the
compatibility among TTL families,
the same test fixture was used for
LS, ACT and FAST devices. In this
case, the test circuit consisted of
two D-flip-flops (XX74s). The ECL
test employed a 10H016 four-bit bi-
nary counter setup to pre-load a 12
(decimal). Consequently, only the
first two of the four flip-flops con-
tained in the counter were active,
resulting in a circuit equivalent to
the TTL +4. The TTL divider test
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Fig. 1 The synchronous frequency divider.

Fig. 2 The asynchronous frequency divider.
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Fig. 3 The TTL frequency divider test fixture. Fig. 4 An ECL frequency divider test fixture.
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Fig. 6 A TTL frequency divider noise measurement setup.

fixture is shown in Figure 3 and the
ECL divider test fixture is shown in
Figure 4.

Figures 5, 6 and 7 show the set-
ups used to make residual noise
measurements. The theory of oper-

ation is that the phase noise of the
signal applied to the input of the
quadrature hybrid is common to
both the RF and LO signal paths.
Residual noise produced by de-
vices in both the RF and LO paths

noise is added to the input signal in
a linear fashion, which is the primary
contributor to the noise floor (large
fm). The second noise mechanism is
multiplicative or modulation noise.
In this case, the input signal under-
goes modulation by a 1/f,, spectral
density. Considerably less is under-
stood about the sources of multi-
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Fig. 7 An ECL frequency divider noise measurement setup.

plicative noise in comparison with
additive noise. Multiplicative noise is
the primary phase noise contributor
at lower modulation frequencies.
The frequency at which the two re-
gions are divided is commonly re-
ferred to as the flicker frequency.
Table 1 lists the measured data
and some theoretical predictions for
residual phase noise. Egan’s mod-

el’ is the most complete and agrees
closely with the measured data.
Robins provides an estimate of ad-
ditive noise (floor) only, whereas
Kroupa and Egan provide a model
for both multiplicative and additive
noise." Robins’ estimate is much
lower than the measured data,
which is attributed to the fact that
Robin’s estimate represents a limit

TABLE |
MEASURED DATA
£ (im) dBc/Hz*
Flicker Data
im=10 Hz tm=1.5 kHz fm=100 kHz Frequency Set
ECL -136 -146 -1486 290 Hz Measured
- -157 -157 Robins
-138 -149 -153 Kroupa
o -143.7 -143.7 Egan
FAST -148 -158 -158 900 Hz Measured
— -170 -170 Robins
-138 -149 -153 Kroupa
LS -133 -151 -157 3 kHz Measured
== -170 -170 Robins
-138 -149 -153 Kroupa
ACT -146 -159 -163 3 kHz Measured
-138 -149 -153 Kroupa
* 1 = 1/2 signal phase noise spectral density
a function of output frequency, divi- Ack

sion ratio and input power level.
Thus the data provided serves only
as comparative study and is not an
absolute measure of the residual
noise to be encountered under var-
ied circuit conditions.
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Fig. 8 Digital frequency divider residual
phase noise.

(minimum) given ideal component
and test conditions.

Conclusion

The measured data clearly indi-
cates ACT (CMOS) to be the family
of choice for low noise frequency
divider circuits. Unfortunately, input
clock frequencies for this logic fam-
ily are not specified beyond 85 MHz
for military and 125 MHz for com-
mercial applications. In high fre-
quency applications, ECL is the only
alternative. Residual phase noise is
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